TRANSPORT COEFFICIENTS AND nPI METHODS

tc measure efficiency with which a conserved quantity is transported over 'long' distances (long compared to microscopic relaxation scales)

effective kinetic theory:
small deviations from thermal equilibrium
weak coupling

→ using equilibrium FT tools

will show:

3PI effective theory \rightarrow same result (σ_{qed})

motivation:

- [1] in principle can use nPI far from equib
- [2] possibility to go beyond leading order (?)

nPI METHODS:

motivation:

sometimes standard pt is poorly convergent try to improve convergence with non-pert techniques

(ex: gauge theories at high T \rightarrow HTL effective theory)

far-from-equib dynamics $n{\rm PI}~\Gamma$: self-consistent in terms of dressed $n{\rm -pt}$ fcns

2PI QED:

$$Z[J, \eta, \bar{\eta}, C, B]$$

$$= \int D[\mathcal{A}\Psi\bar{\Psi}] \operatorname{Exp} \left[i(S_{cl} + J_1\mathcal{A}_1 + \bar{\eta}_1\Psi_1 + \bar{\Psi}_1\eta_1 + \frac{1}{2}C_{12}\mathcal{A}_1\mathcal{A}_2 + B_{12}\Psi_1\bar{\Psi}_2) \right]$$

legendre transform

$$\Gamma[\psi, \bar{\psi}, A, S, D] = S_{cl}[\psi, \bar{\psi}, A]$$

$$+ \frac{i}{2} \text{Tr} \operatorname{Ln} D_{12}^{-1} + \frac{i}{2} \text{Tr} \left[(D_{12}^0)^{-1} \left(D_{21} - D_{21}^0 \right) \right]$$

$$- i \text{Tr} \operatorname{Ln} S_{12}^{-1} - i \text{Tr} \left[(S_{12}^0)^{-1} (S_{21} - S_{21}^0) \right]$$

$$+ \Phi[S, D]$$

 $S_{cl}[\psi, \bar{\psi}, A]$ is the classical action

 S_0 and D_0 are the free propagators

 $\Phi[S,D]$ is the sum of all 2PI diagrams

EoM obtained from the stationarity of the action:

$$\frac{\delta\Gamma[\psi,\bar{\psi},A,S,D]}{\delta A} = 0; \quad \frac{\delta\Gamma[\psi,\bar{\psi},A,S,D]}{\delta D} = 0$$

$$\frac{\delta\Gamma[\psi,\bar{\psi},A,S,D]}{\delta\psi} = 0; \quad \frac{\delta\Gamma[\psi,\bar{\psi},A,S,D]}{\delta\bar{\psi}} = 0$$

$$\frac{\delta\Gamma[\psi,\bar{\psi},A,S,D]}{\delta S} = 0$$

systematic non-pert approx by: expand Φ (ex: loop or 1/N expansion) solve EoM w/o further approx

consv laws corresponding to global symmetries are respected (at any approx order)

example:

$$\Gamma[\psi, \bar{\psi}, A, S, D] = S_{cl}[\psi, \bar{\psi}, A] + \Phi[S, D]$$

$$+ \frac{i}{2} \text{Tr} \operatorname{Ln} D_{12}^{-1} + \frac{i}{2} \text{Tr} \left[(D_{12}^0)^{-1} \left(D_{21} - D_{21}^0 \right) \right]$$

$$- i \text{Tr} \operatorname{Ln} S_{12}^{-1} - i \text{Tr} \left[(S_{12}^0)^{-1} (S_{21} - S_{21}^0) \right]$$

EoM has form of a dyson equation:

$$\frac{\delta\Gamma}{\delta D} = -D^{-1} + [(D^0)^{-1} - 2i\frac{\delta\Phi}{\delta D}] = 0$$

$$\Phi(S,D) = i/2 \longrightarrow +i/4$$

$$\Pi = i \cdots + i \cdots$$

PROBLEM:

 $truncations \Rightarrow gauge dependence$

wi depend on cancellations by different topologies (vertex corrections and self energy corrections)

2PI effective theory

- \rightarrow corrected propagators but not corrected vertices
- \rightarrow expect the ward identities are not satisfied

STRATEGY

introduce the resummed effective action define w.r.t self-consistent solns of the propagators

$$\frac{\delta\Gamma[\psi, \bar{\psi}, A, S, D]}{\delta S}|_{\{S = \tilde{S}[\psi, \bar{\psi}, A], D = \tilde{D}[\psi, \bar{\psi}, A]\}} = 0$$

$$\frac{\delta\Gamma[\psi, \bar{\psi}, A, S, D]}{\delta D}|_{\{S = \tilde{S}[\psi, \bar{\psi}, A], D = \tilde{D}[\psi, \bar{\psi}, A]\}} = 0$$

substituting the self consistent solutions we obtain the resummed action:

$$\tilde{\Gamma}[\psi, \bar{\psi}, A] = \Gamma[\psi, \bar{\psi}, A, \tilde{S}[\psi, \bar{\psi}, A], \tilde{D}[\psi, \bar{\psi}, A]]$$

MOTIVATION FOR RESUMMED ACTION

- [A] final derivs of resummed action $\tilde{\Gamma}[\psi, \bar{\psi}, A]$
- \rightarrow n-point functions for the 'external' fields satisfy standard ward identities

[B] renormalizable

finite # of local medium independent counter-trms J. Berges, S. Borsanyi, U. Reinosa, J. Serreau, Annals Phys. **320**, 344 (2005); U. Reinosa, J. Serreau, JHEP **0607**, 028 (2006).

Different possible defins of n-point functions:

$$\begin{split} V_{1,2,\cdots n}^{(n)} &\sim \frac{\delta^n \, \tilde{\Gamma}(A)}{\delta A_1 \delta A_2 \cdots \delta A_n} |_{A = \tilde{A}} \\ V_{1,2,\cdots n}^{(n)} &\sim \frac{\delta}{\delta A_1 \delta A_2 \cdots \delta A_{n-2}} \left(\frac{\delta \Phi(A,D)}{\delta D_{n-1,n}} |_{D = \tilde{D}(A)} \right) |_{A = \tilde{A}} \end{split}$$

- other mixed definitions possible
- all definitions equivalent at exact level
- there are relations between the definitions (chain rule)

general idea:

integral eqns for the n-point fcns of external fields kernels of integral eqns from fcnal derivs of Φ

define 'external' propagators:

$$(D_{12}^{\mathrm{ext}})^{-1} = \frac{\delta^2}{\delta A_2 \delta A_1} \tilde{\Gamma}; \quad (S_{12}^{\mathrm{ext}})^{-1} = \frac{\delta^2}{\delta \psi_2 \delta \bar{\psi}_1} \tilde{\Gamma}$$

define vertices

$$\Lambda_{132}^{0} = -\frac{\delta^{3} S_{cl}}{\delta A_{3} \delta \psi_{2} \delta \bar{\psi}_{1}} = -\frac{\delta (S_{12}^{0})^{-1}}{\delta A_{3}}$$

$$\Lambda_{132} = -i \frac{\delta^{2} \Phi}{\delta A_{3} \delta S_{21}} = -\frac{\delta \tilde{S}_{12}^{-1}}{\delta A_{3}}$$

$$\Omega_{132} = i \frac{\delta \Phi}{\delta A_{3} \delta D_{21}} = -\frac{1}{2} \frac{\delta \tilde{D}_{12}^{-1}}{\delta A_{3}}$$

$$\Rightarrow = -i \Lambda_{0}$$

$$\Rightarrow = -i \Lambda$$

4-point functions:

$$\begin{split} M_{54;21}^{SS} &= -\frac{\delta^2 \Phi[\tilde{S}, \tilde{D}]}{\delta \tilde{S}_{12} \delta \tilde{S}_{45}}; \quad M_{54;21}^{SD} = -2 \frac{\delta^2 \Phi[\tilde{S}, \tilde{D}]}{\delta \tilde{D}_{12} \delta \tilde{S}_{45}} \\ M_{54;21}^{DS} &= -2 \frac{\delta^2 \Phi[\tilde{S}, \tilde{D}]}{\delta \tilde{S}_{12} \delta \tilde{D}_{45}}; \quad M_{54;21}^{DD} = 4 \frac{\delta^2 \Phi[\tilde{S}, \tilde{D}]}{\delta \tilde{D}_{12} \delta \tilde{D}_{45}} \end{split}$$

BETHE-SALPETER EQNS

Bethe-Salpeter type equations for the vertices: from fcnal derivatives of the dyson equations wrt A

$$\tilde{S}^{-1} = (S^0)^{-1} + \underbrace{i\frac{\delta\Phi}{\delta S}(S,D)|_{\tilde{S},\tilde{D}}}_{-\Sigma}$$

$$\tilde{D}^{-1} = (D^0)^{-1} - \underbrace{2i\frac{\delta\Phi}{\delta D})|_{\tilde{S},\tilde{D}}}_{\Pi}$$

graphically:

EXTERNAL PROPAGATOR:

$$(D_{12}^{\mathrm{ext}})^{-1} = \frac{\delta^2}{\delta A_2 \delta A_1} \tilde{\Gamma}[\psi, \bar{\psi}, A]$$

using the BS eqn \rightarrow

$$(D_{12}^{\text{ext}})^{-1} = (D_{12}^0)^{-1} + i(\Lambda_{314}^0 \tilde{S}_{44'} \Lambda_{4'23'} \tilde{S}_{3'3})$$

external propagator satisfies the usual wi:

$$\partial_1 (D_{12}^{\text{ext}})^{-1} = 0$$

basic mechanism is simple:

dyson equations contain s-channel resummations BS eqns introduce t- and u-channels

 \rightarrow crossing symmetry is restored

we extract the vertex part of the 2-point function:

$$\Pi_{12}^{\text{ext}} = -i \text{Tr} \left[\Lambda_1^0 \tilde{S} \Lambda_2 \tilde{S} \right]$$

$$\Pi_{12}^{\text{ext}} = -i \cdots$$

Conductivity: kubo formula:

$$\sigma = -\frac{1}{6e^2} \left(\frac{\partial}{\partial q_0} 2 \operatorname{Im} \Pi_{ret}^{ii}(q_0, 0) \right) |_{q_0 \to 0}$$

 ∞ # terms contribute at the same order (from low frequency limit in the kubo formula)

pairs of ret/adv propagators with same momenta integrating a term $\int dp_0 G^{ret}(P)G^{adv}(P)$ \rightarrow a divergence called a 'pinch singularity'

regulate using resummed propagators (finite width of thermal excitations)

- \rightarrow extra factors of the coupling in the denominators
- → infinite set of graphs which contain products of pinching pairs that all need to be resummed

RESUMMATION PINCH SINGULARITIES we use:

$$\Pi = -i\Lambda^0 S\Lambda S$$

there is an int eqn for Λ that resums pinch terms

kernel is square of the matrix elements that correspond to the $2 \rightarrow 2$ scattering and production processes (AMY)

show this int eqn produced by the 2PI formalism

iterate BS eqns:

$$+ \frac{1}{2} + \cdots + \cdots$$

calculate M's from derivatives of Φ

$$\Phi(S,D) = i/2 \longrightarrow +i/4$$

results:

$$-iM^{SD} =$$

integral eqn for Λ

$$+ \frac{1}{c} + \frac{1}{d} + \frac{1}{e} + \frac{$$

integral eqn:

$$\operatorname{Re}\hat{\Lambda}^{i}(3, P) = \operatorname{Re}\hat{\Lambda}^{i}_{0}(3, P) + \sum_{j \in \{a, b, c, d, e, f, g\}}$$
$$\frac{1}{2} \int dK \operatorname{Re}\left[\hat{M}^{(j)}(P, K)\right] \frac{\rho(K)}{2\operatorname{Im}\hat{\Sigma}(K)} \operatorname{Re}\hat{\Lambda}^{i}(3, K)$$

$$S_{ret}(P) = P G_{ret}(P), \ G_{ret}(P) \ G_{adv}(P) = -\frac{\rho(P)}{\operatorname{Im}\hat{\Sigma}(P)}$$

$$\hat{\Sigma}(K) = \operatorname{Tr}(K \Sigma_{ret}(K))$$

$$\hat{\Lambda}^{i}(3, K) = \operatorname{Tr}(K \Lambda_{rar}(K))$$

$$\hat{M}(P, K) = \operatorname{Tr}(P [-i\mathbf{M}(P, K)]K)$$

kernel Re $[\hat{M}^{(j)}(P,K)] \rightarrow |ME|^2$

 $\Phi(2 - \text{loop}) \rightarrow \text{the square of the s-channel}$ complete to leading log order G. Aarts and J. Martinez-Resco, JHEP 03, 074 (2005).

 $\Phi(3 - \text{loop}) \rightarrow t$ - and u-channels part of full lo contribution MEC and E. Kovalchuk, Phys. Rev. D **76**, 045019 (2007).

$$\operatorname{Re} \hat{M}^{(f)} \to |m_{e^+e^- \to e^+e^-}^t|^2$$

$$\operatorname{Re} M^{(d)} \to m_{e^+e^- \to e^+e^-}^{t\dagger} \cdot m_{e^+e^- \to e^+e^-}^{s}$$

RESUM PINCHES → FULL LEADING ORDER

basic idea: compare $2 \rightarrow 2$ and $2 \rightarrow 3$

2nd is formally higher order BUT collinear singularity → enhancement

 ∞ series of collinear singularities must be resummed (LPM effect)

 \Rightarrow need 2 coupled integral equations that resum pinching and collinear singularities

METHOD: 3PI EFFECTIVE ACTION

motivation:

need 3-loop diagram to get t- and u- channels in ME heirarchy: $(n \to \infty)PI|_{3-\text{loop}} = 3PI|_{3-\text{loop}}$ J. Berges, Phys. Rev. D 70, 105010 (2004).

result:

3PI $\Gamma \rightarrow 2$ int eqns: pinch and collinear singularities MEC and E. Kovalchuk, Phys. Rev. D 77, 025015 (2008).

3РІ Г:

$$\Gamma[\psi, \bar{\psi}, A, S, D, V, U] = S_{cl}[\psi, \bar{\psi}, A]$$

$$+ \frac{i}{2} \text{Tr} \operatorname{Ln} D_{12}^{-1} + \frac{i}{2} \text{Tr} \left[(D_{12}^0)^{-1} \left(D_{21} - D_{21}^0 \right) \right]$$

$$- i \text{Tr} \operatorname{Ln} S_{12}^{-1} - i \text{Tr} \left[(S_{12}^0)^{-1} (S_{21} - S_{21}^0) \right]$$

$$+ \Gamma_2^0[S, D, V, U] + \Gamma_2^{\text{int}}[S, D, V, U]$$

$$\Gamma_2^{0} = i \qquad \qquad +i/12 \qquad +i/3 \qquad +i/4 \qquad -i/24 \qquad \qquad -i/24 \qquad \qquad +i/4 \qquad +i/4 \qquad +i/4 \qquad +i/4 \qquad +i/4 \qquad \qquad +i/4$$

RESUMMED ACTION:

7 EoM:

functional derivatives wrt $\{A, \psi, \bar{\psi}, S, D, V, U\}$

solve last 4 simultaneously for the sc solns:

$$\tilde{S}[\psi, \bar{\psi}, A], \quad \tilde{D}[\psi, \bar{\psi}, A], \quad \tilde{V}[\psi, \bar{\psi}, A], \quad \tilde{U}[\psi, \bar{\psi}, A]$$

resummed action:

$$\begin{split} &\tilde{\Gamma}[\psi,\bar{\psi},A] = \\ &\Gamma[\psi,\bar{\psi},A,\tilde{S}[\psi,\bar{\psi},A],\tilde{D}[\psi,\bar{\psi},A],\tilde{V}[\psi,\bar{\psi},A],\tilde{U}[\psi,\bar{\psi},A]] \end{split}$$

define external vertices same as before

$$--- = -i V$$

$$--- = -i U$$

$$--- = -i U$$

INTEGRAL EQUATIONS:

2 EoM from fcn derivs of Γ wrt S and D (SD eqns) differentiate wrt A

 \rightarrow BS eqn for Λ and Ω (many cancellations)

sub Ω eqn into Λ eqn and keep up to 2-loop order:

also: 2 EoM from fcn derivs of Γ wrt V and U

 \rightarrow substitute again and keep up to 2-loop order:

1st is int eqn for $\Lambda \sim \text{same as from 2PI}$ 2nd is sc int eqn for V

same eqns found using kinetic theory (AMY) also found using a diagramatic approach *J-S Gagnon and S. Jeon, Phys. Rev.* **D75**, 025014 (2007)

PROSPECTS

method should be generalizable to:

- [1] other transport coefficients (shear viscosity)
- [2] other theories (QCD)
- [3] nlo (?)

KEY:

ALL LEADING ORDER TERMS APPEAR NATURALLY W/O ANY POWER COUNTING

PROBLEMS

external *n*-point functions satisfy wi may get gauge dependence from sc (internal props)

gauge invariance of the effective action: calculate 2PI Γ to L-loop order (g^{2L-2}) \to gauge dependent terms appear at order g^{2L}

- [1] from behaviour of Γ under BRS transformations A. Arrizabalaga, J. Smit, Phys. Rev. **D66**, 065014 (2002).
- [2] from 2PI Nielsen identities explicit gauge dependence of Γ compensates gauge dependence of the vev MEC, G. Kunstatter, H. Zaraket, Eur. Phys. J. C42, 253 (2005).

sc propagators are determined numerically from Γ \rightarrow expect also gauge indep up to order of truncation

certainly should be okay for thermodynamic observ.

checked for 2-loop qed pressure from 2PI Γ S. Borsanyi, U. Reinosa - arXiv:0709.2316.